

Grids and EGEE are not just for High Energy Physicists

Richard Hopkins, National e-Science Centre

June 29, 2005

www.eu-egee.org

INFSO-RI-508833

- Enabling Grids for E-sciencE
 - Goals An appreciation of
 - the range of potential (non-physics) Grid application areas
 - the process by which new application areas are integrated into EGEE as new VOs
 - Outline
 - Biomed the other pilot application
 - Some other potential application areas -
 - Earth observation
 - Weather Forecasting
 - Engineering
 - e-Research and beyond
 - The process for new VO's
 - The up-coming VOs -
 - Computational Chemistry
 - Earth Science
 - Astrophysics

Acknowlegements – mainly a talk prepared by Favid Fergusson, NeSC

The characteristics of biomedical pilot applications (vs HEP)

Prototype level at project day 1

eeee

- HEP very large scale from day 1
- VO was created after the project kicked-off
 - HEP -Virtual Organisations were already set up at project day 1
- Very decentralized: application developers use the grid at their own pace
 - HEP Very centralized: jobs are sent in a very organized way
- Very demanding on services
 - Compute intensive applications
 - Applications requiring large amounts of short jobs
 - Need for interactivity or guaranteed response time
 - HEP Primarily requires "Data Distribution grid" the data challenges
- Resources were focused on the deployment of large scale applications on LCG-2
 - HEP data challenges deployed on several grids
- Decentralized usage of the infrastructure highlights different weaknesses from the more centralized HEP data challenges
 - Integration of Biomed VO used to identify issues relevant to all VOs to be deployed during EGEE lifetime
 - Generally an application is some combination of HEP/Biomed features

Status of Biomedical VO

Enabling Grids for E-science

Number of jobs

Infrastructure usage

Enabling Grids for E-sciencE

- **JRA2** statistics
 - ~15Kjobs per month

■ short jobs < 300 secondes (5 min) ■ 300 s < medium jobs < 2700 s (45 min) 2700 s < long jobs < 10800 s (3 hours)</p>

BIOMED

Biomedical applications

- 3 batch-oriented applications ported on LCG2
 - SiMRI3D: medical image simulation
 - xmipp_MLRefine: molecular structure analysis
 - GATE: radiotherapy planning
- 3 high throughput applications ported on LCG2
 - CDSS: clinical decision support system
 - GPS@: bioinformatics portal (multiple short jobs)
 - gPTM3D: radiology images analysis (interactivity)
- Recent Additions
 - xmipp_ML_refine: Macromolecular 3D structure analysis (CNB)
 - xmipp_multiple_CTFs : Electronmicroscopic images CTF calculation (CNB)
 - GridGRAMM: Molecular Docking web (CNB)
 - GROCK: Mass screenings of molecular interaction (CNB)
 - Mammogrid: Mammograms analysis (EU project)
 - SPLATCHE: Genome evolution modeling (U. Berne/WHO)

- Growing interest of the biomedical community
 - Partners involved proposing new applications
 - New application proposals (in various health-related areas)
 - Enlargement of the biomedical community (drug discovery)
- Growing scale of the applications
 - Progressive migration from prototypes to pre-production services for some applications
 - Increase in scale (volume of data and number of CPU hours)
- Towards pre-production
 - Several initiatives to build user-friendly portals and interfaces to existing applications in order to open to an end-users community

Bio-medicine applications

Enabling Grids for E-science

- Bio-informatics
 - Phylogenetics *
 - Search for primers *
 - Statistical genetics
 - Bio-informatics web portal
 - Parasitology *
 - Data-mining on DNA chips
 - Geometrical protein comparison
- Medical imaging
 - MR image simulation
 - Medical data and metadata management *
 - Mammographies analysis **
 - Simulation platform for PET/SPECT **
 - Applications deployed *
 - Applications tested **
 - Applications under preparation

1. Query the medical image database and retrieve a patient image

Bio-medicine applications

Enabling Grids for E-sciencE

Bio-medicine applications

3.3 Heart Modeling

 Objectives: modeling heart anatomy, dynamics and physiology for heart image processing

bio-mecanical model electrical model very complex structure biological scale out of range

Bioengineering research group, Auckland

• Finite Element modeling

elements oriented in heart fibers direction: fine resolution electrical propagation model based on bidomain theory 4D model (3D+T)

GGF1 - DataGrid WP 10 - March 2001

eGee

Bio-medicine applications

Enabling Grids for E-sciencE

PET – Positron Emission Tomography

Construction of model has High Computational requirements

Use case

Planning percutaneous nephrolithotomy – under-skin kidney stones

egee

Feedback to LCG-2 middleware developers and infrastructure

- Feed-back from Biomed applications
 - Very significant exchanges related to the set-up of the biomed VO and the deployment of relevant service
- Very decentralized: application developers use the grid at their own pace
- Very demanding on services
 - Compute intensive applications
 - Applications requiring large amounts of short jobs
 - Need for interactivity or guaranteed response time
 - Request to use MPI
- Whereas HEP is primarilly Data Distribution
- Generally an application is some combination of HEP/Biomed features

SOME OTHER POTENTIAL APPLICATION AREAS

- Goals An appreciation of
 - the range of potential (non-physics) Grid application areas
 - the process by which new application areas are integrated into EGEE as new VOs
- Outline
 - Biomed the other pilot application
 - Some other potential application areas -
 - Earth observation
 - Weather Forecasting
 - Engineering
 - e-Research and beyond
 - The process for new VO's
 - The up-coming VOs -
 - Computational Chemistry
 - Earth Science
 - Astrophysics

Earth observation applications

MIPAS

MERIS

GOMOS

RA-2 Antenna

LRR

Enabling Grids for E-sciencE

ESA missions:

- about 100 Gbytes of data per day (ERS 1/2)
- 500 Gbytes, for the ENVISAT mission (2002).

Assimilated GOME total ozone SOUTH SECONAL SE

- enhance the ability to access high level products
- allow reprocessing of large historical archives
- improve Earth science complex applications (data fusion, data mining, modelling ...)

Roberto Barbera

AATSR

MWR Ka-band Antenna

DORIS

X-band

Antenna

ASAR Antenna

SCIAMACHY

Earth observation applications

Enabling Grids for E-sciencE

eeee

ENVISAT

3500 Meuro programme cost

- Launched on February 28, 2002
- 10 instruments on board
- 200 Mbps data rate to ground
- 400 Tbytes data archived/year
- ~100 `standard' products
- 10+ dedicated facilities in Europe
- ~700 approved science user projects

INFSO-RI-508833 Grids & EGEE are not just for HEP, Richard Hopkins, NeSC, Sofia 29 June 2005

Flood simulation

Enabling Grids for E-science

Weather forecasting

Significant wave height and mean wave direction

Engineering applications

Enabling Grids for E-sciencE

INFSO-RI-508833 Grids & EGEE are not just for HEP, Richard Hopkins, NeSC, Sofia 29 June 2005

Engineering applications

Enabling Grids for E-sciencE

Network for Earthquake **Engineering Simulation**

- NEESgrid: national infrastructure to couple earthquake engineers with experimental facilities, databases, computers, & each other
- On-demand access to experiments, data streams, computing, archives, collaboration

NEESgrid: Argonne, Michigan, NCSA, UIUC, USC

The expanding horizons of grids

Enabling Grids for E-sciencE

Grids: will support more than e-Research!

- Virtual Digital Libraries needed for research as well as learning
- Note also: Centrality of curation, preservation
 - Under-recognised by many researchers
 - Hence the Digital Curation Centre

Diagram from a slide by the UK's JISC

Enabling Grids for E-sciencE

- Across geographical distance networks
 - Allow remote resources to be accessed
 - SuperJANET, UKLight, GEANT, ...
- Across admin domains grids
 - Allow resources in a VO to be shared: virtual computing
- Across time data (knowledge) curation
 - Provides for future research and education
 - Digital Curation Centre (http://www.dcc.ac.uk/)
- Across disciplines semantics
 - How interfaces to services can be understood via a shared ontology, so services can be discovered and used outside their originating community

Current "Grid-aware" EU projects for Digital libraries

- DELOS
 - Network of excellence exploring technologies for future digital libraries "Future digital libraries should enable any citizen to access human knowledge any time and anywhere, in a friendly, multi-modal, efficient, and effective way"
 - http://www.delos.info/
- DILIGENT
 - a DIgital Library Infrastructure on Grid-ENabled Technology that "will allow members of dynamic virtual research organizations to create on-demand transient digital libraries based on shared computing, storage, multimedia, multi-type content and application resources"
 - <u>http://www.diligentproject.org/</u>

DILIGENT DL infrastructure

Enabling Grids for E-sciencE

Producers

THE PROCESS FOR NEW VOS

- Goals An appreciation of
 - the range of potential (non-physics) Grid application areas
 - the process by which new application areas are integrated into EGEE as new VOs
- Outline
 - Biomed the other pilot application
 - Some other potential application areas -
 - Earth observation
 - Weather Forecasting
 - Engineering
 - e-Research and beyond
 - The process for new VO's
 - The up-coming VOs -
 - Computational Chemistry
 - Earth Science
 - Astrophysics

Identification and integration of new communities: EGEE virtuous cycle

eGee

- Virtuous cycle concept is described in the project Technical Annex
- It describes the role of the different project activities to help new communities to successfully deploy applications on EGEE infrastructure
- As the first open multidisciplinary e-infrastructure in the world, EGEE has to invent the implementation of the virtuous cycle

- Through training, dissemination and outreach, communities already using advanced computing and keen to use EGEE infrastructure are identified
- These communities are encouraged to prepare a document describing their interest to use EGEE
- A scientific advisory panel (EGAAP) assesses and chooses among the interested communities the ones which seem the most mature to deploy their applications on EGEE

- EGEE Generic Applications Advisory Panel is the entry door for new applications that want to be deployed on the EGEE infrastructure
- Important step in the EGEE virtuous cycle
 - Encourages communities to submit a well documented proposal
 - Fosters discussion on the added value brought by the Grid to the applications
 - Points out needs and resources for migration and deployment for each application
 - Prioritizes the deployment of the selected applications
 - Monitors the progress of the selected portfolio
- Participation in EGAAP of 5 external members is useful to reach out to new communities

EGEE Industry Forum

- Enabling Grids for E-sciencE
- Objectives:
 - To promote and disseminate Grid concepts towards industry and service groups
 - To raise the awareness of EGEE within industry
 - To encourage businesses to participate in the project
- Members: interested companies having activities in Europe
- Activities:
 - Organisation of a meeting twice a year
 - Quarterly newsletter
 - Participation to EGEE working groups (EGAAP, Project Technical Forum, EGEE Phase 2, Security group)
 - Internal Working groups
 - Technical aspects of Grid
 - Business models and economical aspects

Up-COMING VOs

- Goals An appreciation of
 - the range of potential (non-physics) Grid application areas
 - the process by which new application areas are integrated into EGEE as new VOs
- Outline
 - Biomed the other pilot application
 - Some other potential application areas -
 - Earth observation
 - Weather Forecasting
 - Engineering
 - Art
 - The process for new VO's
 - The up-coming VOs -
 - Computational Chemistry
 - Earth Science
 - Astrophysics

Computational Chemistry

GEMS, Grid Enabled Molecular Simulations

INFSO-RI-508833 Grids & EGEE are not just for HEP, Richard Hopkins, NeSC, Sofia 29 June 2005

Computational Chemistry: molecular Enabling Grids for E-sciencE simulator

$$i\eta \frac{\partial}{\partial t} \Psi(\{W\}, \{w\}, t) = \hat{H} \Psi(\{W\}, \{w\}, t)$$

Separation of electronic and nuclear motions

Electronic Schrödinger equation:

Nuclear Schrödinger equation:

 $\hat{H}_{elec}\Psi_{n}(\lbrace w \rbrace; \lbrace W \rbrace) = E_{n}(\lbrace W \rbrace)\Psi_{n}(\lbrace w \rbrace; \lbrace W \rbrace) \quad \hat{H}_{n}\chi_{n}(\lbrace W \rbrace, t) = i\eta \frac{\partial}{\partial t}\chi_{n}(\lbrace W \rbrace, t)$

Statistical averaging for beam conditions

eeee The CHEMISTRY community

Enabling Grids for E-sciencE

COMOVIT

Simbex Murqm Dirac **Elchem** Icab **Dysts**

Comovit

- 3 Computer Centres
- New electronic structure programs (MOLCAS, DIRAC, DALTON, COLUMBUS, MR-CCSD).
- New Dynamics programs (AMD, TPS, KMC, condensed phase).
- Chemical knowledge semantic web (molecular structures, apparatuses, processes).

ASTROPHYSICS The MAGIC telescope

- Largest Imaging Air Cherenkov Telescope (17 m mirror dish)
- Located on Canary Island La Palma (@ 2200 m asl)
- Lowest energy threshold ever obtained with a Cherenkov telescope
- Aim: detect γ-ray sources in the unexplored energy range: 30 (10)-> 300 GeV

Computational Chemistry Achievements & Issues

Achievements

- Cluster of 13 nodes + CE + SE + VOMS server has been deployed in GILDA for dedicated use by CompChem.
- Grid based Molecular Simulator (GEMS) ported onto the GILDA test cluster and interfaced to GENIUS
- The CompChem VO has been activated
- Work in hand now to move to production service

Issues

- Requirements for interactive work
 - Outbound connectivity of worker nodes
 - Fast turnaround in jobs
- Access to licensed software

Earth Science Achievements & Issues

Achievements

- ESR (Earth Sciences Research) VO at SARA created in July 2004 and is functional using EGEE resources
 - 17 registered users from 6 countries
- The EGEODE (Expanding GEOsciences on DEmand) VO created at IN2P3 (Lyon) in mid-October for CGG and Geocluster partners
 - Preparation to migration to EGEE
 Production Service
- Important EGEODE application deployed on GILDA and demonstrated at the 2nd EGEE Conference in The Hague using the GENIUS portal
- Production of ozone profiles from the satellite experiment GOME and their validation by using LIDAR data run on EGEE production service

Issues

- Need secure access to data and metadata for authorised groups/subgroups
- Access to licensed software

Number of jobs submitted by ESR VO members

MAGIC Achievements & Issues

Achievements

- A Magic Virtual Organisation already exists in EGEE
 - VO server is hosted by SARA/NIKHEF
 - Successful first running in GILDA as well as in Crossgrid testbed using LCG-2 middleware
- Developments underway for EGEE data challenge in early 2005
 - CNAF will support the Magic VO with a Resource Broker
 - PIC will support the Magic VO with storage and the RLS
 - CNAF, PIC and GridKA will provide CPU
 - GILDA can be used for the first test as well

Issues

- Education
 - 'EGEE for dummies'
- Getting extra EGEE resources for data challenge
 - Precise 'process' definition and its execution

- Goals
 - Demonstration of grid operation for tutorials and outreach
 - Initial deployment of new applications for testing purposes
- Key features
 - Initiative of the INFN Grid Project using LCG-2 middleware
 - On request, anyone can quickly receive a grid certificate and a VO membership allowing them to use the infrastructure for 2 weeks
 - Certificate expires after two weeks but can be renewed
 - Use of friendly interface: Genius grid portal
- Very important for the first steps of new user communities on to the grid infrastructure

GILDA numbers

- 14 sites in 2 continents •
- >1200 certificates issued, 10% renewed at least once
- >35 tutorials and demos performed in 10 months
- >25 jobs/day on the average
- Job success rate above 96%
- >320,000 hits on the web site from 10's of different countries •
- >200 copies of the UI live CD distributed in the world

RB Statistics - Mozilla

Grids & EGEE are not just for HEP. Richard Hopkins, NeSC, Sofia 29 June 2005 **INFSO-RI-508833**

egee

NA4 Applications and GILDA

Enabling Grids for E-sciencE

- 7 Virtual Organizations supported:
 - Biomed
 - Earth Sciences
 - Earth Science Academy (ESR)
 - Earth Science Industry (CGG)
 - Astrophysics
 - Astroparticle Physics (MAGIC)
 - Astrophysics (PLANCK)
 - Computational Chemistry (GEMS)
 - Grid Search Engines (GRACE)
- Development of complete interfaces with GENIUS for 3 Biomed Applications: GATE, hadronTherapy, and Friction/Arlecore
- Development of complete interfaces with GENIUS for 4 Generic Applications: EGEODE (CGG), MAGIC, GEMS, and CODESA-3D (ESR) (see demos!)
- Development of complete interfaces with GENIUS for 16 demonstrative applications available on the GILDA Grid Demonstrator (<u>https://grid-demo.ct.infn.it</u>)

- EGEE and grids not just physics
- For communities to benefit they need to know what grids can do for them – dissemination
- Many communities are beginning to adopt the grid
- EGEE has a mechanism for assisting communities onto the grid

• The end